metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jiang-Feng Xiang, Ming Li, Si-Min Wu, Liang-Jie Yuan* and Ju-Tang Sun

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China

Correspondence e-mail: ljyuan@whu.edu.cn

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.002 Å R factor = 0.030 wR factor = 0.099 Data-to-parameter ratio = 13.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Diaquabis(pyridine-2,3-dicarboxylato)copper(II)

The centrosymmetric title copper(II) complex, $[Cu(C_7H_4. NO_4)_2(H_2O)_2]$, was synthesized *via* the hydrothermal method at a mild temperature (353 K). The Cu^{II} ion has a distorted octahedral coordination environment, with two N and two O atoms from the pyridine-2,3-dicarboxylate ligands in a common plane and with two water molecules in axial positions. Hydrogen bonds play an important role in the formation of the three-dimensional structure.

Received 12 April 2006 Accepted 19 April 2006

Comment

The rational design and controlled crystallization of coordination complexes have received much attention (Kuduva *et al.*, 1999; Muthuraman *et al.*, 2001). A series of such complexes has been synthesized and characterized. Among the ligands, multidentate N- or O-donor ligands such as pyridinedicarboxylic acids (pydcH₂) have drawn extensive attention (Harmon & Shaw, 1999; Puntus *et al.*, 2004; Du *et al.*, 2006), because they can be regarded not only as hydrogen-bond acceptors and donors, depending upon the number of deprotonated carboxylic groups, but also because π - π stacking interactions are also possible (Chen *et al.*, 2003). We present here the crystal structure of the title complex, (I).

Fig. 1 shows the coordination environment of the Cu^{II} ion of (I), which lies on a special position of site symmetry $\overline{1}$ and has a distorted octahedral coordination environment. The equatorial plane is occupied by two pyridine-2,3-dicarboxylate ligands coordinating through the pyridine N and one O atom of the deprotonated 2-carboxyl group.

The molecules are connected by two types of hydrogenbonding interactions. One is the interaction of the carboxylate groups and coordinated water molecules, which links the complexes to form a chain structure. The other is the interaction between neighbouring carboxylate groups (Fig. 2, Table 2).

© 2006 International Union of Crystallography

All rights reserved

Figure 1

The coordination environment of Cu^{II} in (I), showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 70% probability level. Unlabelled atoms are generated by the symmetry operator (2 - x, -y, -z).

Figure 2

A packing diagram for (I), viewed approximately along the b axis. Dashed lines indicate hydrogen bonds.

Experimental

A mixture of CuO (0.0199 g, 0.25 mmol), 2,3-pvdcH₂ (0.1025 g, 0.5 mmol) and H₂O (3 ml) was kept in a Teflon-lined autoclave at 353 K for 2 d and then cooled to room temperature. Block-like blue crystals of (I) were obtained in ca 78% yield based on CuO. The same product can also be obtained at a slightly higher temperature (393 K).

Z = 2

 $D_x = 1.905 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

 $\mu = 1.52 \text{ mm}^{-1}$

T = 273 (2) K

Block, blue

Crystal data

$[Cu(C_7H_4NO_4)_2(H_2O)_2]$
$M_r = 431.80$
Monoclinic, $P2_1/n$
a = 9.2115 (8) Å
b = 7.9171 (6) Å
c = 10.3631 (9) Å
$\beta = 94.945 \ (1)^{\circ}$
$V = 752.95 (11) \text{ Å}^3$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.703, \ T_{\max} = 0.863$

0.25 \times 0.16 \times 0.1 mm 4841 measured reflections

1802 independent reflections 1706 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.012$

 $\theta_{\rm max} = 28.0^{\circ}$

Refinement

и S

F

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0615P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.030$	+ 0.6891P]
$wR(F^2) = 0.099$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
1802 reflections	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
131 parameters	$\Delta \rho_{\rm min} = -0.68 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of independent and constrained	Extinction correction: SHELXL97 (Sheldrick, 1997)
refinement	Extinction coefficient: 0.015 (3)

Table 1 Selected bond angles (°).

 $O1 - Cu1 - O5^{i}$

O1 ⁱ -Cu1-O1	180	$N1-Cu1-O5^{i}$	91.00 (6)
O1 ⁱ -Cu1-N1	79.17 (6)	O1-Cu1-O5	89.74 (5)
O1-Cu1-N1	100.83 (6)	N1-Cu1-O5	89.00 (6)
$N1-Cu1-N1^{i}$	180	$05^{i} - Cu1 - 05$	180

90.26(5)

Symmetry code: (i) -x + 2, -y, -z

Table 2		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$05 - H6 \cdots O4^{ii}$	0.81(1)	2.02 (1)	2.813 (2)	167 (3)
$03 - H4 \cdots O6^{i}$	0.82	1.58	2.398 (2)	178
$05 - H5 \cdots O4^{iii}$	0.81(1)	2.06 (1)	2.859 (2)	171 (3)

C7-O1-Cu1

116.75 (12)

Symmetry codes: (i) -x + 2, -y, -z; (ii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) x + 1, y, z.

H atoms bonded to O atoms were located in a difference map and refined isotropically, with distance restraints of O-H = 0.82 (1) Å and $H \cdots H = 1.4$ (1) Å. H atoms bonded to C atoms were placed in idealized locations, with C-H = 0.95 Å, and were refined using a riding model. For all H atoms, $U_{iso}(H) = 1.2U_{eq}(C,O)$.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors thank Professor Bao-Sheng Luo for helpful discussions.

References

Bruker (1997). SMART (Version 5.1), SAINT (Version 5.1) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, W., Yue, Q., Chen, C., Yuan, H.-M., Xu, W., Chen, J.-S. & Wang, S.-N. (2003). J. Chem. Soc. Dalton Trans. pp. 28-30.

- Du, M., Cai, H. & Zhao, X.-J. (2006). Inorg. Chim. Acta, 359, 673-679.
- Harmon, K. M. & Shaw, K. E. (1999). J. Mol. Struct. 513, 219-230.
- Kuduva, S. S., Craig, D. C., Nangia, A. & Desiraju, G. R. (1999). J. Am. Chem. Soc. 121, 1936-1944.
- Muthuraman, M., Masse, R., Nicoud, J.-F. & Desiraju, G. R. (2001). Chem. Mater. 13, 1473-1479.

Puntus, L., Zolin, V. & Kudryashova, V. (2004). J. Alloys Compd. 374, 330-334.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.